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Model experiments are performed in a long, thin-walled, fluid-filled, latex tube in 
which the fluid is locally suddenly stopped, starting from a steady flow, thus 
simulating the wave phenomenon generated by the final closure of the aortic valve. 
The resulting waveform is determined as it propagates upstream. The effect of a local 
step-wise change in compliance close to the valve, representing the aortic sinus 
section, is investigated. The observed phenomena are analysed by means of a 
quasi-one-dimensional model, solved by the method of characteristics, taking into 
account the influence of nonlinearities, wall shear stress, viscoelastic wall properties 
and wave reflections. The theoretical computations are well confirmed by the 
experimental results. The pressure jump, induced by the valve closing, appeared to 
be slightly affected by nonlinearities. The decrease of the pressure jump while 
propagating upstream and the gradual pressure increase that follows the pressure 
jump are caused by the effect of wall shear stress. The local change in compliance 
generates the expected wave reflections and has a strong influence on the rise-time 
of the wave front. The experiments confirmed the prediction that wall viscoelasticity 
is the dominant factor in the gradual decay of the slope of the wave. 

1. Introduction 
The study of nonlinear wave propagation in liquid-filled viscoelastic tubes is often 

motivated by its application to arterial blood flow. It is known from both static and 
dynamic measurements (Bergel 1961 ; Milnor 1982) that the walls of the large blood 
vessels exhibit nonlinear elastic and viscous properties. The analysis of the resulting 
blood flow and pressure pulse waveforms at various locations in the arterial tree has 
been the subject of many investigations. Most often the approach has been 
mathematical. Important contributions have been given among others by Womersley 
(1957). For an overview of these studies we refer to Pedley (1980). More recently a 
detailed linear approach has been given by Kuiken (1984). The results of most of these 
mathematical models of arterial pulse propagation have been compared to in-vivo 
data, which is quite difficult in view of the many assumptions made in each model. 
Only a few data are available from well-defined model experiments. An outline of 
such experiments was given by Kivity & Collins (1974) in order to determine the visco- 
elastic properties of large blood vessels. Gerrard (1 985) performed a series of measure- 
ments of the longitudinal wall motion in water-filled latex tubes, induced by an 
oscillating flow, in order to verify Womersley’s predictions and to investigate the 
influence of local tethering at the tube end. 

In the present paper the wave phenomena in a long latex tube are described and 
analysed following a jump in pressure. The physiological relevance of this study apart 
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from gaining more insight into wave propagation in the arterial system, is more 
specifically the understanding of the phenomena that occur just after aortic valve 
closure. Bellhouse & Talbot (1969), van Steenhoven & van Dongen (1979) and van 
Steenhoven et al. (1982), among others, analysed the closing behaviour of this valve 
in more detail. When the natural valvular closing mechanism is disturbed, for 
example when a bioprosthesis is used, the necessary back flow to complete the closure 
increases considerably. The reversed flow early in diastole may then increase from 
2 % to 25 % of the total forward flow ejected during systole. This back flow is suddenly 
slowed down by the closing aortic valve, which causes a rise in the aortic pressure 
known as the dicrotic notch. Sauren et al. (1983) demonstrated that the valve leaflets 
are much stiffer than the aortic wall. The latter in turn differs slightly in elasticity 
from the sinus walls. Moreover, all these tissues show remarkable visco-elastic 
material properties. It is the ultimate goal of this study to determine the parameters 
which govern the pressure rise just after valve closure, with reference both to its 
magnitude and slope close to the valve and its propagation through the aorta. As 
a first step, in the present model study sudden valve closure is simulated, starting 
from a steady initial flow, and the resulting pressure rise is studied in relation to the 
wall material properties, the initial volume flow rate, the distance to the valve and 
a negative or positive reflection coefficient at a distinct point (like the sinus-aorta 
connection) in the tube. First the experimental set-up and some qualitative experi- 
mental observations are presented. Next some physical models based on one- 
dimensional wave propagation in flexible tubes are considered. Finally, a quantitative 
comparison of theoretical predictions with experimental data is given. 

2. Qualitative experimental observations 
2.2. The experimental set-up 

The basic set-up consists of a latex tube (Penrose Drain, length x 0.6 m, internal 
diameter x 18 mm, wall thickness x 0.2 mm) fixed between two reservoirs, see figure 
1 (a) .  The tube is slightly pre-stressed in the axial direction and supported by a rigid 
flat plane. The fluid used is water. Collapse of the tube is prevented by a transmural 
pressure po of 3 kPa adjusted by the fluid height in the reservoirs. At  x = 0 the 
diameter of the latex tube is locally 20 % reduced by means of a Perspex ring. From 
the left reservoir a metal tube (outer diameter = 8 mm) is aligned along the axis of 
the latex tube, the tip of it being located at the constriction at x = 0. From this tip 
towards the right reservoir four nylon threads (diameter = 50 pm) are stretched. Over 
these threads a rigid washerlike occluder (outer diameter = 16 mm, internal 
diameter = 6.5 mm, specific weight = lo3 kg/m3) can be taken along by the flow. A 
rapid reduction of the volume flow to zero is achieved a t  the moment that the occluder 
contacts both the constriction of the latex tube and the tip of the previously 
mentioned metal tube (closing time x 15 ms). 

The experimental procedure was as follows. First a transmural pressure of about 
3 kPa was applied, causing a radial pre-strain of about 7 yo. Starting from this 
situation the steady-state relation between area and pressure was determined. Next, 
a constant fluid flow was established from the right to the left reservoir with a velocity 
between 0.1 and 0.5 m/s. The corresponding Reynolds number had a value between 
1800 and 9OOO so that in most cases the flow was turbulent. The wave experiment 
was started by releasing the occluder, at the upstream end of the set-up, so that it 
is taken along by the flow. At the moment the occluder contacts the constriction, 
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Photonic sensor 

Sinu ii Photonic sensor 

FIGURE I .  The experimental set-up: (a) schematical drawing and (a) photograph of the 
constriction point when the latex tube is removed. 

the flow is stopped, causing a jump in pressure and cross-sectional area which 
propagates upstream. The time- and position-dependence of pressure were measured 
locally on the axis of the tube with a catheter-tip manometer (Millar PC 470) which 
was positioned through the metal tube as shown in figure l ( b ) .  The catheter 
cross-section is 3% of that of the tube. I ts  influence on the wave phenomena is 
neglected. To determine the wavefront distortion two catheter-tip manometers were 
used simultaneously, one close to the constriction and the other, analogously inserted 
at the right-hand side, at a distance of a multiple of 50 mm from the former. To 
measure the wall deflection during the pressure jump a photonic sensor (MTI KD-100) 
was used, placed about 1 mm above the tube itself. The value of volume flow was 
measured electromagnetically (Transflow 601) at the inflow end of the tube. All 
electrical signals were recorded on an electromagnetic tape recorder (HewletGPackard 
3968 A) and the pressure and wall deflection signals were analysed using a two-channel 
transient recorder (Datalog 912). From the simultaneous measurement of the time 
dependent pressure and tube diameter, the visco-elastic properties of the tube were 
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FIGURE 2. Typical tracing of the pressure jump measured close to the valve (p, = 3 kPa). 
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FIQURE 3. Simultaneous recording of the jumps in pressure and diameter half-way up the tube 
(p, = 3 kPa, Do = 17.12 mm). 

deduced, see 94. Direct measurements of the tube wall properties by cyclic uniaxial 
tensile experiments confirmed the presence of viscous effects, but no reliable data 
pertaining to the strain rates (2 s-l) and frequencies ( 0 4 0  Hz) of interest were 
obtained. The wave experiments were performed at various values of initial fluid 
velocity and initial pressure. Also the presence of a sinus region close to the valve 
was simulated. By telescoping one latex tube into another a local change in wall 
thickness of a factor 2 was achieved. Two situations were realized: a compliant 
thin-walled sinus section of 0.04 m length adjacent to the valve connected to a less 
compliant aorta and vice versa. 
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u, = 0.33 m/s 

FIQURE 4. The pressure waveform as a function of position (p,, = 3 kPa). 

2.2. Characteristic results 
A typical result of the pressure signal in a uniform tube and close to the valve is given 
in figure 2. As a result of valve closure the pressure rapidly increases. The rise time 
of the wavefront is about 15 ms and is caused by the finite closing time of the occluder. 
This initial fast pressure jump is followed by a much more gradual increase, after which 
the pressure signal shows a second rapid increase caused by the wave reflection at 
the upstream reservoir. In figure 3 a simultaneous recording of the jumps in pressure 
and diameter 0.17 m upstream of the valve is given. This illustrates the close 
relationship between area and pressure changes and is used to determine the 
pressurearea relationship of the tube during the jump. In  figure 4 the pressure 
waveform is shown a t  different positions. From these waveforms it is seen that the 
rise-time of the wavefront increases with distance from the occluder. Furthermore, 
the pressure jump appears to  decrease slightly while propagating upstream. Finally, 
some characteristic wave-reflection results are given in figure 5.  The right-hand 
tracing of figure 5 (a)  gives the pressure jump close to the valve for the case in which 
the ‘sinus’ is more compliant than the ‘aorta’. As a reference the left half gives 
the pressure jump in a uniform tube. Due to the compliant ‘sinus’ region the rise 
time of the pressure close to the valve is found to be increased. Similarly, figure 5 (b )  
gives the pressure jump for the case in which the ‘sinus’ is less compliant than the 
‘aorta’. Then pressure oscillations close to the valve are observed. In  the next section 
some physical models will be presented to interpret these experimental observations. 

3. Physical models 
3.1. Basic equations 

The observed wave phenomena can be described mathematically by the one- 
dimensional laws of mass and momentum for a straight uniform flexible tube, see 
Lighthill (1978) and Pedley (1980) : 

a aA au au 1 ap 27 - ( u A ) + t = o ,  - + u - + - - = - .  ax at ax pax  PR 
Here u , p  denote the cross-sectional average of axial velocity and pressure; x is the 
axial coordinate ; t is time ; 7 and p are viscosity and density of the fluid; 7 = q(au/ar)l, 
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FIQURE 5. The influence of the ‘sinus’ compliance: (a) compliance of ‘sinus’ is increased and ( b )  
compliance of ‘sinus’ is decreased, both with respect to the reference situation on the left 
(po = 3 kPa). 

is the wall shear stress and A = nR2 is the cross-sectional area. The assumption of 
one-dimensionality leading to equation (1) holds if the wavelengths of all disturbances 
of interest are long compared to the diameter. In our case the main wavelength 
associated with the axial extent of the wavefront is estimated to be about six times 
the tube diameter. Besides, the difference between the cross-sectional average of the 
axial velocity squared and the square of the average axial velocity is neglected, which 
is a reasonable approximation for the turbulent flow situation at hand. The radial 
pressure variation is also neglected which is certainly valid far from the wavefront. 
Within the front a small radial variation of the pressure of the order of 5 % is possible. 
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We will assume here that the phenomena observed are well described by the set of 
equations ( 1 ) . 

In order to describe the wall behaviour we follow Kivity & Collins (1974) by 
introducing the following tube law : 

(2) 
aA 

P = f ( 4 + 9 ( 4  at’ 
Now we define the compliance per unit length c, the wave speed a and a new 
variable v :  

where A,, is the initial cross-sectional area at x = 0. In a steady state or if 
visco-elasticity is neglected, i.e. g(A) = 0, the definition of v can also be written as 

where poo is the initial pressure at the valve. Inserting these definitions in (l), and 
after some rearrangement we obtain the following characteristic set : 

The + signs refer to the right-running characteristics (c+) ,  while the - signs refer 
to the left-running characteristics (c-) .  T ,  which equals 27/R, will be specified later 
on. Besides, one of the equations (5) can also be used in combination with the 
continuity equation to  give 

a v  a V  au 
at ax ax - + u - + a - - 0 .  

This set of equations needs to be completed with the initial and boundary conditions: 

u = -uo, v = v, = - ( t  < O ) ,  
Pa0 

u = u,(t) ( x  = 0, t 2 0). (7b) 

The subscript 0 will represent the initial state. The velocity uv(t) represents the 
time-dependent fluid velocity at x = 0 imposed by the closing valve. The small initial 
variation in v means a small variation in initial cross-sectional area A,. Its influence 
on initial velocity is neglected. 

We shall now discuss the nonlinear inviscid solution, some aspects of wall shear 
stress, the influence of wall viscoelasticity and reflections due to tube inhomogeneities. 
For the sake of simplicity and clarity each of these effects will be treated separately. 
The treatment of nonlinear effects is described, e.g. by Pedley (1980), while the effects 
of wall shear stress and wall viscoelasticity are treated on the basis of wave 
coordinates according to Whithsm (1974). 

3.2. Nonlinear inviscid case 
Neglecting shear stresses and wall viscosity, (5 )  read 
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FIQURE 6. x--t diagram in the case of nonlinear elastic tube behaviour. 

The initial condition is then u = -uo, v = 0 for t < 0 and the boundary condition 
at x = 0 is u = 0 for t 2 0, so u,(t) is assumed here to be a step function. Applying 
the invariance of u-v to the arbitrary points A and B in the uniform regions 
separated by the wavefront (see figure 6), we obtain 

V B  = u,. (9) 

(10) 

We can approximate Y, defined by (4), with poo = p,, by assuming a linear relation 
between a and p :  

with (a(p--p,)( -g 1. Then 

a = a, (1-a@-p, ) ) ,  

and the solution for the jump in pressure becomes 

AP = PB-PO = faou,(l-iaPa,u,). (12) 

For the latex tube a > 0, so the jump becomes smaller due to the nonlinearity. 
The distortion of the wavefront, expressed in terms of the increase in rise-time, 

follows from the difference in ( u + a )  between the top and the foot of the wave. TO 
first order we find, using (10) and (12), 

A(u+a) 
4 

At = 

As was already pointed out by Olsen & Shapiro (1967), the wave travels undistorted 
if apai = 1, which is approximately valid for latex. 

Finally we consider the influence of initial pressure p ,  on wavefront velocity, by 
raising p ,  with regard to a reference pressure pref .  Again we assume la(p,-pref)l 4 1 
and 

To first order in pressure we then find for the velocity of the wavefront centre 

(14) a, = ared1-aOo-Pref)). 
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-x 

FIGURE 7. Introduction of the wave-coordinates 6 and u. 

3.3. Some aspects of wall shear stress and viscoelasticity 
In  their linearized form, the set of equations ( 5 )  can be written as 

T Aogo a2u 
( u - v ) = - + - - = S ,  

P P ax2 
where the source term S, which is assumed to be small, represents the right-hand side. 
In  order to analyse the problem we introduce the following reduced variables (see 

(17) 
X a o t - x  u = - ,  A u v = - ,  A V g=- S so t o  , E = E - ,  u=-, 

SO’ 

figure 7) :  
E = -  

UO a0 to  a0 to  UO UO 

where to is a characteristic time for the jump and So some typical value of S. The 
time coordinate u is the time elapsed since the passage of the wavefront, 5 is chosen 
such that the variations along the wave are of order unity. Introducing the new 
variables in (16) for the right-running characteristic and in the linearized equation 

(18) 
(6) yields a 

- (a+$) = 8, 
aE 

The initial and boundary conditions, denoting the initial value of the source term 
by gi, become 

$ = - I ,  $ = & E  foru+-co, 

fi = for E = 0. (20b) 

Now G, fi and g are expanded in the small parameter E:  

fi = Q(0) + d(1) + . . . , v̂  = $(O) + E ; ( l )  + . . . , g = g(0) + ego) + . . . . 
Inserting this in (18) and (19) and equating terms of equal power in 8 yields 
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It is easily found from (21) and (20a) that 
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At the valve, where = 0, it follows from (22a) and (23a) that 

(24 )  $0) = -- J' (@o)-f?i)du' ( E  = 0). 
2 - m  

Equation (23b) will be used to describe the development of the waveform while 
propagating upstream. Equations (23a) and (24) describe the pressure signal close 
to the valve. 

3.3.1. Wall shear stress 
Let us first assume that the source consists of wall shear stress only and that there 

is no viscoelasticity. In that case $is directly related to pressure, v  ̂= -Po, ) / (  pa, uo). 
We will take the initial shear force To as a reference : So = To/p,  and 8 = 1. In general 

= T / T ,  can be written as the sum of a steady part ps, which depends on velocity 
only, and an unsteady part, pu. For the unsteady shear stress we will take the flat 
boundary-layer solution for a time-dependent semi-infinite flow. This leads to the 
following approximation for Pu : 

This approximation is expected to be valid if the unsteady viscous penetration depth 
(qat,/p)i is much smaller than the velocity gradient length of the initial flow 
(27u0/TO R ) ,  or stated otherwise if pu 9 1, even if the initial flow is turbulent. For 
laminar tube flow, the relative error of approximation in (25) is, according to Zielke 
(1968), of the order of 4.4 (qato/pR2):. 

Since the acceleration is large only within the wavefront, where the velocity 
changes from a value - 1 to a value d-( t )  say, we shall represent ad/aa by 

(26 1 
- = {  ad ~ - + i  ( O G ~ G  I) ,  
aa 0 (a < 0, d > 1). 

Then, the expression for the source term becomes 

It will be shown in the next section, that the unsteady part of 8 is indeed dominant 
within the wavefront. By inserting (27) into (23b) for a = 1, and neglecting the 
steady part of 8, we obtain the following equation for the velocity at CT = 1 : 

A similar result holds for v, and thus for the pressure, so that we may write in 
dimensional variables 

p'IcR2to 4 
~p = p--Po = pa, uo exp (-3, L = +ao (7) . 
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By combining (27), (23a) and (24) and using 6, = 0, ps(0) = 0, we find for the pressure 
at the valve after closure: 

Hence, as a result of wall shear stress the pressure jump will decay exponentially while 
propagating upstream and the pressure at the valve will gradually increase after the 
initial jump. 

3.3.2. Wall viscoelasticity 

So is 
If only viscoelasticity is important an appropriate choice for the reference value 

The source term fl, rewritten in wave coordinates, is in zeroth order in E 

In this case (23b)  is a simple diffusion equation for do). Since go) = 1 +do) the same 
holds for go): 

aflw 1 32pCo) 
(33) -- _--  

at 2 au2 ' 

A suitable solution representing a jump-like behaviour of V^(O)  is 

The parameter to accounts for the finite rise-time of the jump at 6 = 0. In  order to 
investigate the decay of the slope of the wavefront, we define the rise-time as follows: 

ag(o) -1 a;(o) -1 

A u = ( = )  ; Au0=(=) u = 0 , ( = 0  . u=o 

It is easily found from (34) that, in dimensional form, 

-=-- At 
Ato Auo 

(35) 

Finally, by inspection of (23a), (24) and (32) it is found that viscoelasticity does 
not contribute to v after valve closure, and consequently it does not modify the 
pressure jump at the valve. 

A separate treatment of nonlinear effects, wall viscoelasticity and shear force is only 
possible if the effects are not strong and do not interfere. For the present situation 
this is a rather good assumption. The only significant effect of nonlinearity is a 
somewhat reduced value of the pressure jump at the valve; shear stress and 
viscoelasticity have no such effect. Viscoelasticity causes a diffusion-like broadening 
of the wavefront, the two other factors have no significant influence. Wall shear stress 
induces a decay of the pressure jump when the wavefront propagates upstream. Here 
there is some interference. The characteristic decay length contains the rise-time of 
the jump which increases by viscoelasticity. 
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FIGURE 8. x - t  diagram in the case of a tube inhomogeneity. 

3.4. Wave rejections 

Suppose two regions of different wall properties and cross-sectional areas and assume 
that the change of properties occurs in a distance Z satisfying the compactness 
condition Z/aoi to 4 1 ,  i = 1,2. The inviscid, elastic and linearized equations ( 5 )  read 

with a,$ = (AoJpcot). The initial and boundary conditions ( 7 )  reduce to: 

u1= -uo, ~2 = -~oAo,/Ao,,  pi = P O  (t < 01, ( 3 8 4  

u, = 0 ( x  = 0,  t 2 0) .  (38b) 

(39a, b)  

Continuity of pressure and flow a t  the interface (5 = AL) implies: 

p,(AL, t )  = P,(AL, 0 ,  U , W ,  t )  A,, = u,(AL, t )  A,, * 

We further introduce as reflection coefficient : 

Let x,, x2 be arbitrary positions in regions 1 and 2 respectively and define the time 
i.ntervals At, to At4 as: 

AL x,-AL , At4 =-. 2AL (41) ( A h  - X,)  , At,=-+- A t , = L ,  At,= 2 
a01 a,, a,, a 0 2  a01 

X 

combination of a c+-characteristic in region 1 and a c--characteristic in region 2 (see 
figure 8 )  using (39) then leads directly to the pressure solution in the two regions as 
function of time : 

t Pl t Pa 

I 0 + At, Po 0 +. At, Po 
-+ At1 + A4 Po + pa,, uo 
-+ 3At, + At, p,+ (1 +R) pa,, u, 
-+ 3At, + 2At, p ,  + (1 + 2R) pa,, u, 
-+ 5At, + 2At, p ,  + (1 + 2R+ R2) pa,, U ,  

-+ 5At, + 3At, p ,  + (1 + 2R + 2R2) pa,, u, 

+ At, + At4 
+ At3 + 2At4 

p ,  + (1 + R) pa,, u, 
p ,  + (1 + 2R + R2) pa,, u, . 

(42) 
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0 Irl 

FIGURE 9. Tube compliance versus pressure: I static and I1 dynamic values. I11 corresponds to 
the time dependent values during the pressure. jump (Po = 3 kPa, A,  = 2.30 lob4 m2). The dotted 
lines correspond to the best-fit. 

The limiting value in both regions equals p ,  +puO,uO AO1/AOP. Hence a positive 
reflection coefficient (2, < 2,) causes a gradual increase of the pressure in both 
regions, while for a negative value of R (2, > 2,) the pressure will vary in an 
oscillatory manner. 

4. Verification of theory 
4.1. Determination of wall properties 

To verify the theory, the material constants a, defined by (lo), and the viscoelastic 
parameter go have to be determined. To that end, first a steady state relation between 
A and p was determined and the corresponding compliance c1 = dA/dp is depicted 
in figure 9 versus the pressure difference p-p,. The second procedure was to 
determine the incremental values of A A  and Ap over the wave jump, defined as the 
increases with regard to the initial state at about 100 ms after the jump front, from 
wave experiments with uo = 0.2 m/s. We will refer to c2 = AA/Ap  as the dynamic 
compliance. By raising the initial pressure, the pressure dependence of c, shown in 
figure 9 was determined. The observed difference between the dynamic and static 
compliances is an indication of the presence of small low-frequency viscoelastic effects. 
Similar behaviour is known to occur in arteries (Bergel 1961a, b). The wave speeds, 
a = (A/pc): ,  corresponding to the static (I) and dynamic (11) values of the compliances 
are well represented by: I a = 3.71 m s-l, I1 a = 4.11{1-0.53 iO-4(p-p0)} m s-l. 
Hence, according to (lo), a, = 3.71 m s-l, a = 0 for the first and a, = 4.11 m s-l, 
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FIGURE 10(a.b). For caption see facing page. 
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FIQURE 10. Influence of nonlinearities and wall viscoelasticity : (a) the pressure jump as function 
of the initial velocity (z = 0.02 m), (b) the velocity of the wavefront centre as function of the initial 
pressure (uo = 0.21 m s-l, prel = 3 kPa), (c) the rise-time of the wavefront as function of position 
(uo = 0.33 m s-l, At, = 13 ms, z, = 0.02 m). The solid lines correspond to the theoretical prediction: 
I, I1 nonlinear theory (equations (12), (15) and (13)) baaed on static and dynamic compliances, 
respectively and I11 viscoelastic theory (equation (36)). 

a = 0.53 lob4 Pa-' for the second case. Thirdly, in order to calculate go, the 
time-dependent values of diameter and pressure of one experiment were used to 
calculate c3 = A f / p f ,  where a prime denotes differentiation with respect to time. 
Inserting this definition into the linearized version of the viscoelastic model equation 
(see (Z)), this results in 

(43 ) 

Of course c3 is not a material property, but depends on time through A"/A'.  For the 
recordings of figure 3 this means that for the low-pressure part of the wavefront 
A" > 0, and c, will be less than c; for the high-pressure part of the front A" < 0 and 
c3 will exceed c. This effect is indeed demonstrated in figure 9, where c3 for the 
experiment of figure 3 has been plotted as a function of p ( t )  -po.  In (43), the dynamic 
value c2 is inserted, since this is considered to be some average value in the frequency 
range of interest. By means of a best-fit procedure, a value for go was obtained of 
1.3 lo5 N s m-*. The corresponding best-fit for c, as a function ofp(t) -po  is also shown 
in figure 9. 

Cowley (1982) reports that for the determination of the tube law a distinction has 
to be made between the tethered and untethered situation. In  the latter case an 
explicit time dependence can enter the tube law even for a purely elastic wall material. 
In  the present experiment, no significant longitudinal wall motion was observed, so 

C 

c3 = (l+g,cA"/A')' 
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FIGURE 11 (a,b). For caption see facing page. 

that  the time dependence of the tube law is attributed to  the viscoelastic properties 
of the latex material. It is interesting to compare the obtained value of go with the 
values of the ratio of imaginary and real part of the Young's modulus Ei and E, at 
different angular frequencies w as reported by Gerrard (1985). From the definition 
of g in (2) and the inverse proportionality between compliance and Young's modulus, 
it follows that approximately the following relation holds: EJE, x c g o o  x 2 
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FIGURE 11. Influence of wall shear stress: (a) the initial wall shear stress as a function of the initial 
velocity determined from the pressure drop over a uniform tube of 0.8 m length; ( b )  the decay of 
the pressure jump as a function of position (uo = 0.33 m s-l, Apo = 1.45 kPa, zo = 0.02 m); (c) the 
reduced pressure increase close to the valve between 30 and 130 ma after valve closure as a function 
of the initial velocity (z = 0.02 m). The solid lines correspond to the theoretical prediction 
(equations (44), (29) and (30)): I, I1 in (b) are based on to = 13 and 30 ma, while in (c) to = 13 ma 
was used. 

There is a remarkable agreement between this result and that of Gerrard up to 
frequencies of 4 Hz, although go was obtained in a completely different manner a t  
a much higher characteristic frequency. 

4.2. Influence of nonlinearities and wall viscoelasticity 
According to (12), (13) and (15) thenonlinearitiesaffect the pressure jump, therise-time 
of the wavefront at position z and the velocity of the wavefront centre, while wall 
viscoelasticity affects the rise-time of the wavefront according to (36). The pressure 
jump close to the valve, defined as the pressure increase within about 30 ms after 
valve closure, was measured as a function of the initial velocity, the result of which 
is given in figure lO(a). The inaccuracy of measurement is also indicated, based on 
a 95 % reliability interval. The agreement between theory and experiment is close, 
especially when the dynamic values of the compliance are used. The dependence of 
the velocity of the wavefront centre on the initial velocity is difficult to measure due 
to the restricted range of adjustable initial velocities. Hence the initial state was 
changed by raising the initial pressure. The result of this experiment is shown in figure 
lO(b) ,  together with the prediction according to (15). Here again the agreement is 
fair. Finally, the rise-time of the\ wavefront, defined by the time interval between 5 
and 95% of the value of the jump, is determined as a function of position from 
waveforms like those shown in figure 4. Nonlinear theory based on the values of both 
static and dynamic compliances predicts that the waveform with initial rise-time Ato 
would travel almost undistorted, which is in contrast with the experimental results, 
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see figure lO(c). By substitution of the value of go given above into (36), we obtain 
a theoretical prediction of the decay of the slope of the wave due to the effect of wall 
viscoelasticity. In this way a local observation of the relation between A and p yields 
a prediction of the change in waveform as a function of position. The rise-time thus 
obtained is also plotted in figure lO(c), showing that viscoelasticity is indeed the 
dominant factor. The agreement between theory and experiment is quite satisfactory, 
considering the crudeness of the viscoelastic model applied. 

4.3. Influence of wall shear stress 

The main influences of the wall shear stress as predicted from theory are the gradual 
decay of the pressure jump as a function of position (equation (29)) and the steady 
increase of the pressure after the jump front (equation (30)). For the theoretical 
prediction a value of the initial wall shear stress is necessary. This value was estimated 
from the turbulent-flow pressure-loss relation (Schlichting 1979) : 

(44) 

A verification of this relation at the Reynolds numbers occurring in our set-up, was 
performed by the pressure-drop measurement over a uniform tube of 80 cm length, 
the result of which is given in figure 11 (a). If we substitute that in (27), we find, for 
a value o f t  = to = 13 ms and uo = 0.3 m/s, that the ratio of T, and To is 7,  which 
means that within and immediately behind the wavefront the assumption leading 
to (28) is justified. 

The decay of the pressure jump as a function of position, predicted by theory, is 
observed in the experiments as shown in figure 11 ( b ) ,  where Apo is the initial value 
of the pressure jump at  z = 0. Due to viscoelastic effects the rise-time of the pressure 
jump increases from 13 ms close to the valve to 30 ms at z = 0.3 m (see figure 1Oc). 
Hence in figure 11 ( b )  two theoretical predictions are given based on these two values 
of to .  Agreement between theory and experiment is quite satisfactory. Next, the- 
gradual pressure increase after the jump was measured close to the valve as a function 
of the initial velocity. The reduced pressure increase between 30 and 130 ms after 
valve closure, defined as (p130-p30)/Apo, is plotted in figure l l ( c )  as a function of 
the initial velocity. The unsteady wall shear stress gives a contribution which is, 
according to (30), independent of initial velocity. The contribution of the initial wall 
shear stress (equation (44)) is approximately proportional to velocity, and is found 
to be smaller than the unsteady term. The total effect is quite small, of the order of 
a few per cent. The agreement between theory and experiment is fair. 

1 P 4  To = h - - with h = 0.316 Re-0.25. 
4 R  

4.4. Influence of ‘sinus ’ compliance 
Finally, the observed wave reflections in figure 5 can be explained from linear theory 
through (42). The reflection coefficient R was calculated from (40) under the 
assumption that the wave speed in both sections is proportional to the square root 
of the ratio of wall thickness and tube diameter. In  figure 12 (a) the jump is shown 
in the compliant ‘sinus’ case. At the left the pressure jump is shown in the ‘sinus’ 
and at the right the one in the ‘aorta’. Due to the small length of the ‘sinus’ region 
in comparison with the wavelength a monotonic increase of pressure is found, which 
however converges quite well to the theory line. In  case of a stiffer ‘sinus’ region, 
see figure 12 ( b ) ,  both theory and experiment show large oscillations close to the valve 
and smaller ones in the ‘aorta’. 
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FIGURE 12. Influence of ‘sinus’ compliance: (a) the pressure jumps in the ‘sinus’ and in the ‘aorta’ 
when the compliance of the ‘sinus’ is increased and (b )  when the compliance of the ‘sinus’ is 
decreased with respect to that of the ‘aorta’. The dotted lines correspond to the theoretical 
prediction (equation (42)). 

5. Concluding discussion 
The present model experiments show that wave phenomena in a long uniform tube 

can be determined accurately by means of the present experimental method and that 
they are well described by the one-dimensional laws of mass and momentum. The 
pressure increase, induced by the valve closing, is slightly affected by nonlinearities. 
In  the inhomogeneous case the compliance of the ‘sinus’ region strongly affects the 
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rise-time of the wavefront. The experiments also indicate that wall viscoelasticity is 
the dominant factor in the gradual flattening of the waveform. The rapid deceleration 
of the fluid element within the wavefront causes a locally large value of wall shear 
stress. The most important consequence is that the pressure jump of the wavefront 
decays while propagating upstream. At the valve the pressure keeps slightly 
increasing after the initial jump. 

To interpret the experimental observations an analytical approach was followed 
based on the method of characteristics. The effects of nonlinearities, wall shear stress 
and wall viscoelasticity could be treated separately, since for the present situation 
these effects are not strong and do not interfere. There is only some interference 
between wall shear stress and wall viscoelasticity with regard to the decay of the 
pressure jump when the wavefront propagates upstream. 

The difference that was observed between the dynamic and static compliances is 
an indication of the presence of small low-frequency viscoelastic effects. Obviously, 
the dynamic compliance, being some average value in the frequency range of interest, 
appeared to be the most relevant for the present experiments. The simple viscoelastic 
model used, appears to give a satisfactory description of the behaviour of the latex 
material during the jump. Of course the low-frequency, large-time behaviour cannot 
be described by such a simple model. In that case a more sophisticated constitutive 
description of the wall material, e.g. that of Holenstein, Nerem & Niederer (1984), 
should be applied. Such a model could also explain the transition from ‘static’ to 
‘ dynamic ’ compliance. 

With regard to the medical implications of this study it is stated that the magnitude 
of the pressure rise just after valve closure is primarily determined by the backflow 
velocity. Hence it is worth developing a prosthetic leaflet valve which exhibits the 
natural, gradual way of closure. Furthermore, the magnitude as well as the rise-time 
of the pressure jump close to the valve is strongly determined by the differences in 
compliance between the sinus region and the aortic one. Therefore, it is important 
that in the case of a prosthetic leaflet valve the sinus region remains compliant and 
that it is not stiffened due to the operation procedure. 
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their valuable comments and Mr J. W. G. Cauwenberg, Ing. Th. J. A. G. van Duppen 
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